R1286K SERIES

2ch. PWM Step-up / Inverting DC/DC Converter with Synchronous Rectifier for AMOLED / LCD

NO.EA-283-191114

OUTLINE

The R1286K 2ch DC/DC converter is designed for AMOLED display power source. It contains a step up DC/DC converter and an inverting DC/DC converter.
Step up DC/DC converter generates boosted output voltage to 4.6 V to 5.8 V (Selectable). Inverting DC/DC converter generates negative voltage down to -2.0 V to -6.0 V (Selectable) that is dynamically adjustable with single wire interface signal. R1286K consist of a voltage reference, error amplifiers, an oscillator, PWM control circuits, over current protection circuits, short protection circuits, an under voltage lockout circuit (UVLO), thermal shutdown circuit, a NMOS driver and a synchronous PMOS switch for boost converter, a PMOS driver and a synchronous NMOS switch for inverting converter, and so on. High efficiency boost and inverting DC/DC converters can be composed with two external inductors and three capacitors.

FEATURES

[Step-up DCIDC Converter (CH1)]

- Selectable Output Voltage (Voutp) $\cdots \cdots \cdots \cdots \cdots \cdots \cdots$ R1286KxxxX ${ }^{(1)}$: 4.6 V to 5.8 V (0.1 V Step)
- Externally Adjustable Output Voltage $\cdots \cdots \cdots \cdots \cdots \cdot$ R1286K001B: 4........ V to 5.8 V

R1286K1xxX ${ }^{(1)}: 300 \mathrm{~mA}$
- VOUTP Voltage Load Regulation........................... Typ. $\pm 5 \mathrm{mV}$
- VOUTP Voltage Line Transient Response.......... Typ. $\pm 10 \mathrm{mV}$

[Inverting DC/DC Converter (CH2)]

- Dynamically Adjustable Output Voltage (Voutn) $\cdots-2.0 \mathrm{~V}$ to -6.0 V (Fixed Rate: 3.0 V, 0.1 V Step)
- Selectable Single Wire (S-Wire) I/F $\cdots \cdots \cdots \cdots \cdots \cdots$............ R1286KxxxX ${ }^{(1)}$: Default value (0.1 V Step)
- Externally Adjustable Output Voltage $\cdots \cdots \cdots \cdots \cdots \cdot \mathrm{R} 1286 \mathrm{~K} 001 \mathrm{~B}:-2.0 \mathrm{~V}$ to -6.0 V
 R1286K1xxX (1): 300 mA
- VOUTN Voltage Load Regulation Typ. $\pm 5 \mathrm{mV}$
- VOUTN Voltage Line Transient Response $\cdots \cdots \cdots$ Typ. $\pm 10 \mathrm{mV}$

[Controller]

- Internal Start-up Sequence Control with Soft-start Operation
- Auto Discharge Operation for Both Outputs
- Short circuit protection
- Internal timer-latch protection

Typ. 16 ms or 40 ms

- Maximum duty cycle Typ. 85\% (CH1) / Typ. 90\% (CH2)

[^0]
R1286K

NO.EA-283-191114

- UVLO(Under voltage lock out) protection Typ. 2.05 V
- Thermal Shutdown ... Typ. $150^{\circ} \mathrm{C}$
- Operating Frequency .. 1750kHz
- Package ... DFN(PLP)2730-12

APPLICATION

- Fixed voltage power supply for portable equipment
- Fixed voltage power supply for AMOLED, LCD

SELECTION GUIDE

The inverting output voltage (Voutn), the positive output voltage (Voutr) and the versions of the inverting output voltage are user-selectable options.

Product Name	Package	Quantity per Reel	Pb Free	Halogen Free
R1286K $\$ x x *-T R$	DFN(PLP)2730-12	$5,000 \mathrm{pcs}$	Yes	Yes

\$: Specify the delay time for timer latch ${ }^{(1)}$.
(0) Typ. 16 msec
(1) Typ. 40 msec
$x x$: Specify the set output voltages $\left(\mathrm{V}_{\text {SET }}\right)$ for default value of $\mathrm{Voutx}_{\text {and }}$ and $\mathrm{Vondef}^{(2)}$

* : Specify setting methods for Voutn and Voutp.

Vondef: Voutn default value ${ }^{(3)}$ (Internal fixed value at shipping)
Vonmin : Voutn minimum value with S-Wire
Vonmax: Voutn maximum value with S-Wire
$t_{\text {tra }}$: Variable time per 0.1 V with S-Wire ${ }^{(4)}$

*	Designation for Settings of Voutx	Vondef	Vonmin	Vonmax	$\mathrm{t}_{\text {TRA }}$
A	Voutp / Voutn Fixed Output Voltage type ${ }^{(5)}$	-5.4 V to -2.4 V	-5.4 V	-2.4 V	10 ms
B	Voutp / Voutn Adjustable Output Voltage type	-	-	-	-
C	Voutr / Voutn Fixed Output Voltage type	-5.0 V to -2.4V	-5.0 V	-2.0 V	10 ms
D		-5.2 V to -2.4 V	-5.2 V	-2.2 V	10 ms
E		-5.6 V to -2.6 V	-5.6 V	-2.6 V	10 ms
F		-5.8 V to -2.8 V	-5.8V	-2.8 V	10 ms
G		-6.0 V to -3.0 V	-6.0 V	-3.0 V	10 ms
H		-5.0 V to -2.4V	-5.0 V	-2.0 V	360 ¢s
J		-5.4 V to -2.4 V	-5.4 V	-2.4 V	$360 \mu \mathrm{~s}$
K		-5.6 V to -2.6 V	-5.6 V	-2.6 V	$360 \mu \mathrm{~s}$
L		-5.8 V to -2.8 V	-5.8V	-2.8 V	$360 \mu \mathrm{~s}$
M		-6.0 V to -3.0 V	-6.0 V	-3.0 V	$360 \mu \mathrm{~s}$
N		-5.2 V to -2.4 V	-5.2 V	-2.2 V	$360 \mu \mathrm{~s}$

[^1]
R1286K

NO.EA-283-191114
Output voltage combination list

$\mathbf{V}_{\text {SET }}$ codes (xx)	$\mathbf{V}_{\text {OUTP }}$	$\mathbf{V}_{\text {ONDEF }}$
01	Setting by external resistor	Setting by external resistor
02	4.6 V	-4.9 V
03	5.8 V	-6.0 V
04	4.8 V	-4.9 V
05	5.4 V	-5.4 V
06	5.0 V	-5.0 V
07	5.0 V	-3.5 V
08	5.6 V	-5.6 V
09	5.8 V	-5.8 V
10	5.5 V	-5.5 V
11	4.6 V	-4.4 V

BLOCK DIAGRAMS

R1286KxxxX ${ }^{(1)}$ (Fixed Output Voltage Type)

R1286KxxxX Block Diagram

[^2]
R1286K

NO.EA-283-191114

R1286K001B (Adjustable Output Voltage Type)

R1286K001B Block Diagram

PIN DESCRIPTION

R1286K Pin Description

Pin No.	Symbol		Description
	R1286KxxxX ${ }^{(1)}$	R1286K001B	
1	VOUTNS	VFBN	Feed Back Pin for Inverting DC/DC
2	VOUTN	VOUTN	Outout Pin for Inverting DC/DC
3	LXN	LXN	Switching Pin for Inverting DC/DC
4	PVCC	PVCC	Power Input Pin
5	VCC	VCC	Analog Power Input Pin
6	GND	GND	Analog GND Pin
7	PGND	PGND	Power GND Pin
8	LXP	LXP	Switching Pin for Step up DC/DC
9	VOUTP	VOUTP	Output Pin for Step up DC/DC
10	VOUTPS	VFBP	Feed Back Pin for Step up DC/DC
11	CE	CE	Chip Enable and S-Wire Control Input Pin (R1286KxxxX) Chip Enable Pin (R1286KxxxB)
12	TST	VREF	TEST Pin ${ }^{(2)}$ (R1286KxxxX) Reference Voltage Output Pin for Inverting DC/DC (R1286KxxxB)

* The tab on the bottom of the package is substrate level (GND). It is recommended that the tab be connected to the ground plane on the board.

[^3]
R1286K

NO.EA-283-191114

ABSOLUTE MAXIMUM RATINGS

ABSOLUTE MAXIMUM RATINGS

Electronic and mechanical stress momentarily exceeded absolute maximum ratings may cause the permanent damages and may degrade the lifetime and safety for both device and system using the device in the field. The functional operation at or over these absolute maximum ratings is not assured.

RECOMMENDED OPERATING CONDITIONS

Symbol	Parameter	Rating	Unit
Vcc	Operating Input Voltage	2.3 to 5.5	V
Ta	Operating Temperature Range	-40 to 85	${ }^{\circ} \mathrm{C}$

RECOMMENDED OPERATING CONDITIONS

All of electronic equipment should be designed that the mounted semiconductor devices operate within the recommended operating conditions. The semiconductor devices cannot operate normally over the recommended operating conditions, even if when they are used over such conditions by momentary electronic noise or surge. And the semiconductor devices may receive serious damage when they continue to operate over the recommended operating conditions.

[^4]
ELECTRICAL CHARACTERISTICS

The specifications surrounded by \qquad are guaranteed by Design Engineering at $-40^{\circ} \mathrm{C} \leq \mathrm{Ta} \leq 85^{\circ} \mathrm{C}$.

R1286K Electrical Characteristics

$\left(\mathrm{Ta}=25^{\circ} \mathrm{C}\right)$

Symbol	Parameter	Conditions	Min.	Typ.	Max.	Unit
Icc	$\begin{array}{l}\text { VCC Consumption Current } \\ \text { (at no switching) }\end{array}$	$\mathrm{V}_{\mathrm{CC}}=5.5 \mathrm{~V}$		1.2		mA
ISTANDBY	Standby Current	$\mathrm{V}_{\mathrm{CC}}=\mathrm{V}_{\text {LXP }}=5.5 \mathrm{~V}, \mathrm{~V}_{\mathrm{CE}}=\mathrm{V}_{\text {LXN }}=0 \mathrm{~V}$				

[R1286K0xxx]

toly	Delay Time for Protection	$\mathrm{V} \mathrm{cc}=3.7 \mathrm{~V}$	8	16	24	ms
[R1286K1xxX ${ }^{(1)}$]						
tDLY	Delay Time for Protection	$\mathrm{V}_{\mathrm{cc}}=3.7 \mathrm{~V}$	32	40	48	ms

Maxduty1	Maximum Duty Cycle 1	$\mathrm{Vcc}=3.7 \mathrm{~V}$		85		\%
Ivoutp	Voutp Discharge Current	$\mathrm{V}_{\text {cc }}=3.7 \mathrm{~V}$, $\mathrm{V}_{\text {outp }}=0.1 \mathrm{~V}$		1.1		mA
tssp	CH1 Soft-start Time	$\mathrm{V}_{\mathrm{cc}}=3.7 \mathrm{~V}$	1.6	2.4	3.0	ms
RLXP	LXP Pin On-resistance	$\mathrm{V}_{\mathrm{cc}}=3.7 \mathrm{~V}$		400		$\mathrm{m} \Omega$
Rsyncp	Synchronous SW Pch.Onresistance	$\mathrm{V}_{\mathrm{cc}}=3.7 \mathrm{~V}$		700		$\mathrm{m} \Omega$
[R1286K0xxx]						
Ilimlxp	LXP Pin Limit Current	$\mathrm{V} \mathrm{cc}=3.7 \mathrm{~V}$		1.0		A
[R1286K1xxX]						
ILIMLXP	LXP Pin Limit Current	$\mathrm{V} \mathrm{cc}=3.7 \mathrm{~V}$		1.1		A
[R1286KxxxX]						
Voutp	Voutp Voltage Tolerance	$\mathrm{V} \mathrm{cc}=3.7 \mathrm{~V}$	$\times 0.991$	$\mathrm{V}_{\text {SET }}$	$\times 1.009$	V

[^5]
R1286K

NO.EA-283-191114
The specifications surrounded by \square are guaranteed by Design Engineering at $-40^{\circ} \mathrm{C} \leq \mathrm{Ta} \leq 85^{\circ} \mathrm{C}$.

R1286K Electrical Characteristics (Continued)

$\left(\mathrm{Ta}=25^{\circ} \mathrm{C}\right)$

| Symbol | Parameter | Conditions | Min. | Typ. | Max. | Unit |
| :---: | :--- | :--- | :---: | :---: | :---: | :---: | :---: |
| [R1286K001B] | | | | | | |
| $V_{\text {FBP }}$ | $V_{\text {FBP }}$ Voltage Tolerance | $V_{c C}=3.7 \mathrm{~V}$ | 0.985 | 1.000 | 1.015 | V |
| $\mathrm{I}_{\text {FBP }}$ | $V_{\text {FBP }}$ Input Current | $V_{C C}=5.5 \mathrm{~V}, \mathrm{~V}_{\text {FBP }}=0 \mathrm{~V}$ or 5.5 V | -0.1 | | 0.1 | $\mu \mathrm{~A}$ |

- Inverting DC/DC Converter (CH2)

Maxduty2	Maximum Duty Cycle 2	Vcc=3.7V		90	
Ivoutn	Voutn Discharge Current	$V_{c c}=3.7 \mathrm{~V}$, Voutn=-0.1		0.3	
RLxn	LXN Pin On-resistance	$V_{c c}=3.7 \mathrm{~V}$		400	mA
RsYncn	Synchronous SW Nch.On- resistance	$\mathrm{V}_{\mathrm{cc}}=3.7 \mathrm{~V}$		$\mathrm{~m} \Omega$	

[R1286K0xxx]

Ilimlxn	LXN Pin Limit Current	$\mathrm{Vcc}=3.7 \mathrm{~V}$		1.5		A
[R1286K1xxX]						
Ilimlxn	LXN Pin Limit Current	V cc $=3.7 \mathrm{~V}$		1.8		A
[R1286KxxxX]						
Vondef	Voutn Default Voltage Tolerance	$\mathrm{Vcc}=3.7 \mathrm{~V}$, selectable between Vonmin and Vonmax at shipping	$\begin{gathered} \hline \mathrm{V}_{\mathrm{SET}} \\ -70 \end{gathered}$	$V_{\text {SET }}$	$\begin{aligned} & \mathrm{V}_{\mathrm{SET}} \\ & +70 \end{aligned}$	mV
Vonmin	Voutn Minimum Voltage Tolerance	$\mathrm{Vcc}=3.7 \mathrm{~V}$, selectable between -2.0 V and -3.0 V at shipping	$\begin{gathered} \mathrm{V}_{\mathrm{SET}} \\ -70 \end{gathered}$	Vset	$\begin{aligned} & \mathrm{V}_{\mathrm{SET}} \\ & +70 \end{aligned}$	mV
Vonmax	Voutn Maximum Voltage Tolerance	$\mathrm{Vcc}=3.7 \mathrm{~V}$	$\begin{gathered} \hline \mathrm{V}_{\mathrm{SET}} \\ -70 \end{gathered}$	$\begin{aligned} & \text { Vonmin } \\ & +3.0 \mathrm{~V} \end{aligned}$	$\begin{aligned} & \mathrm{V}_{\mathrm{SET}} \\ & +70 \end{aligned}$	mV
Voutn	Voutn Voltage Tolerance (S-Wire)	$\mathrm{V}_{\mathrm{cc}}=3.7 \mathrm{~V}$ (Guaranteed by design engineering)	$\begin{gathered} V_{S E T} \\ -80 \end{gathered}$	$V_{\text {SET }}$	$\begin{aligned} & \mathrm{V}_{\text {SET }} \\ & +80 \end{aligned}$	mV
tssn	Soft-start Time for CH2	$\mathrm{Vcc}=3.7 \mathrm{~V}$	1.6x Vondef/ -4.9	2.3x Vondef/ -4.9	3.0 x Vondef/ -4.9	ms

[R1286K001B]

$V_{\text {FBN }}$	$V_{\text {FBN }}$ Voltage Tolerance	$V_{c c}=3.7 \mathrm{~V}$	-25	0	25	mV
$\mathrm{V}_{\text {REF }}$	$\mathrm{V}_{\text {REF }}$ Voltage Tolerance	$\mathrm{V}_{\mathrm{cc}}=3.7 \mathrm{~V}$	1.18 $+\mathrm{V}_{\text {FBN }}$	1.2 $+\mathrm{V}_{\text {FBN }}$	1.22 $+\mathrm{V}_{\text {FBN }}$	V
$\mathrm{I}_{\text {FBN }}$	$\mathrm{V}_{\text {FBN }}$ Input Current	$\mathrm{V}_{\text {cc }}=5.5 \mathrm{~V}, \mathrm{~V}_{\text {FBN }}=0 \mathrm{~V}$ or 5.5V	-0.1		0.1	$\mu \mathrm{~A}$
tsSN	Soft-start Time for CH 2	$\mathrm{~V}_{\text {cc }}=3.7 \mathrm{~V}$	1.6	2.8	3.6	ms

All test items listed under Electrical Characteristics are done under the pulse load condition $\left(\mathrm{Tj} \approx \mathrm{Ta}=25^{\circ} \mathrm{C}\right)$.

THEORY OF OPERATION

Start-up Sequence

When CE level turns from ' L ' to ' H ' level, the softstart of CH 1 starts the operation. After detecting output voltage of CH 1 (Voutp)as the nominal level, the soft start of CH 2 starts the operation.

CE

Auto Discharge Function

When CE level turns from 'H' to 'L' level, the R1286K goes into standby mode and switching of the outputs of Lxp and Lxn will stop. Then dischage switsh between Vouts and GND and switch between Voutp and GND turn on and discharge the negative output voltage and positive output voltage. The positive and negative output voltage is discharged to OV in standby mode. If Vcc voltage became lower than UVLO detect voltage , discharge switches also turn on and discharge output voltage(Voutn and Voutp) .
In case of timer latch protection, discharge switches will keep off .

Thermal Shutdown Protection

If the over temparature is detected, internal Mosfet will turn-off soon. And when the temparature get lower than the release temparature, IC is reset and restart the operation.

R1286K

NO.EA-283-191114

Overcurrent Protection and Short-circuit Protection Circuit Timer

The over current protection circuit supervises the peak current of the inductor (The current passing through NMOS transistor of CH 1 and PMOS transistor of CH 2) with respect to each switching cycle. If the peak current exceeds the Lx current limit (lıimlxp or llimlxa), the over current protection circuit turns off the NMOS transistor of CH 1 or PMOS transistor of CH 2 . If the over current continues more than the protection delay time (TdLy), the short current protection circuit latches the built-in driver at OFF state and stops the operation of DC/DC converter.

* Lx limit current (lıimLxp or lıimlxn) and the protection delay time (TdLy) can be easily affected by self-heating and ambient environment. The drastic drop of output voltage or the unstable output voltage caused by the short-circuiting may affect the protection operation and the delay time.
To release the latch over current protection, reset the IC by inputting "L" into CE pin or by making the input voltage lower than the UVLO detector threshold (VuvL01).
During the softstart operation of CH 1 and CH 2 , the timer operates until detecting output voltage of CH 2 (Voutn) as the nominal level. Therefore, even if the softstart cannot finish correctly because of the short circuit, the protection timer function will be able to work correctly.

Sequence with S-Wire Control for Voutn (R1286KxxxX ${ }^{(1)}$)

- Default Value Driving

Voutp rises up first and secondarily Voutn goes down. In this time Voutn is set Vondef.
Soft-start time (tss) $=2.4 \mathrm{~ms}+2.3 \times$ Vondef $^{\prime}-4.9$ (Typ.)

[^6]
- Adjusted Value Driving

After receiving the adjusted value setting command, Vouts is changed to the target voltage in multiple steps method. Adjusted value is also selectable with pulse count (Please refer to Voutn VARIABLE TABLE).

In the case of R1286KxxxA/C/D/E/F/G,

Vouts change 0.01 V step in every 1 ms and it takes 10 ms per 0.1 V that is minimum step for Voutn setting value.

In the case of R1286KxxxH/J/K/L/M/N,

Voutn change 0.01 V step in every 36 us and it takes 360 us per 0.1 V that is minimum step for Voutn setting value.
[Multiple steps method (In case of $\Delta \mathrm{V}$ out $=0.1 \mathrm{~V}$)]

- Multiple step rate : $0.01 \mathrm{~V} / 1 \mathrm{~ms}$ or $36 \mu \mathrm{~s}$
- Transient time (ttra) for minimum Δ Voutn : 10 ms or 0.36 ms

R1286K

NO.EA-283-191114

Voutn Variable Table

The adjusted value setting command are operated with S-Wire input (pulse count) as the following table.

BIT (Pulse Count)	R1286KxxxA	R1286KxxxG
0 (Default)	-2.4 to -5.4	-3.0 to -6.0
1	-5.4	-6.0
2	-5.3	-5.9
3	-5.2	-5.8
4	-5.1	-5.7
5	-5.0	-5.6
6	-4.9	-5.5
7	-4.8	-5.4
8	-4.7	-5.3
9	-4.6	-5.2
10	-4.5	-5.1
11	-4.4	-5.0
12	-4.3	-4.9
13	-4.2	-4.8
14	-4.1	-4.7
15	-4.0	-4.6
16	-3.9	-4.5
17	-3.8	-4.4
18	-3.7	-4.3
19	-3.6	-4.2
20	-3.5	-4.1
21	-3.4	-4.0
22	-3.3	-3.9
23	-3.2	-3.8
24	-3.1	-3.7
25	-3.0	-3.6
26	-2.9	-3.5
27	-2.8	-3.4
28	-2.7	-3.3
29	-2.6	-3.2
30	-2.5	-3.1
31	-2.4	-3.0

Timing Chart for Commands with S-Wire

Timing specification

Item	Symbol	Min.	Typ.	Max.	Unit
Soft-start time	tss		tssp + tssn		ms
Voutn Transient time (1 step)	ttra		10 $(R 1286 \mathrm{KxxxA} / \mathrm{C} / \mathrm{D} / \mathrm{E} / \mathrm{F} / \mathrm{G})$ $(\mathrm{R} 1286 \mathrm{KxxxH} / \mathrm{J} / \mathrm{K} / \mathrm{L} / \mathrm{M} / \mathrm{N})$		
Turn-off delay time	toff_dly	70	90	ms	
Vout discharge time	tvo_off		2.0	110	$\mu \mathrm{~s}$
CE pin input voltage, high	V_{IH}	1.2			ms
CE pin input voltage, low	V_{IL}			0.4	V
S-Wire time, high	ton	2	10	20	$\mu \mathrm{~s}$
S-Wire time, low	toff	2	10	20	$\mu \mathrm{~s}$
S-Wire command stop time	tstop	70	90	110	$\mu \mathrm{~s}$

R1286K

NO.EA-283-191114
Operation of Set-up DC/DC Converter (CH1) and Output Current

Inductor Current Waveforms (IL) through Indictor (L)

The PWM control type of CH1 has two operation modes characterized by the continuity of inductor current: discontinuous inductor current mode and continuous inductor current mode.

When a NMOS Tr. is in On-state, the voltage to be applied to the inductor (L) is described as V_{in}. An increase in the inductor current (IL1) can be written as follows:
$\mathrm{IL} 1=\mathrm{V}_{\mathrm{IN}} \mathrm{X}$ ton $/ \mathrm{L}$
Equation 1

In the CH 1 circuit, the energy accumulated during the On-state is transferred into the capacitor even in the Offstate. A decrease in the inductor current (IL2) can be written as follows:
IL2 $=($ Vout - Vin $) \times$ tf $/ L$.
Equation 2

In the PWM control, IL1 and IL2 become continuous when tf = toff, which is called continuous inductor current mode. When the device is in continuous inductor current mode and operates in steady-state conditions, the variations of IL1 and IL2 are same:

```
Vin x ton / L = (Vout - Vin) x toff / L

Therefore, the duty cycle in continuous inductor current mode is:

If the input voltage \(\left(\mathrm{V}_{\mathrm{IN}}\right)\) is equal to \(\mathrm{V}_{\text {out, }}\), the output current (lout) is:
lout \(=\mathrm{V}_{\text {IN }}{ }^{2} \mathrm{x}\) ton \(/(2 \mathrm{x} L \times\) VOUT \()\)
-Equation 5

If lout is larger than Equation 5, the device switches to continuous inductor current mode. The Lx peak current flowing through \(L\) (ILxmax) is:


The Lx peak current limit circuit operates in both modes if the ILxmax becomes more than the Lx peak current limit. When considering the input and output conditions or selecting the external components, please pay attention to ILxmax.

Notes: The above calculations are based on the ideal operation of the device. They do not include the losses caused by the external components or Lx switch. The actual maximum output current will be \(70 \%\) to \(90 \%\) of the above calculation results. Especially, if IL is large or \(\mathrm{V}_{\text {IN }}\) is low, it may cause the switching losses.

\section*{R1286K}

NO.EA-283-191114

\section*{Operation of Inverting DCIDC Converter (CH2) and Output Current}


\section*{Inductor Current Waveforms (IL) through Indictor (L)}

The PWM control type of CH 2 has two operation modes characterized by the continuity of inductor current: discontinuous inductor current mode and continuous inductor current mode.

When a PMOS Tr. is in ON-state, the voltage to be applied to the inductor (L) is described as \(\mathrm{V}_{\mathbb{N} .}\). An increase in the inductor current (IL1) can be written as follows:
\(\mathrm{IL} 1=\mathrm{V}_{\mathrm{IN}} \mathrm{x}\) ton \(/ \mathrm{L}\)
Equation 8

In the CH 2 circuit, the energy accumulated during the On-state is transferred into the capacitor even in the Offstate. A decrease in the inductor current (IL2) can be written as follows:

IL2 \(=\left|V_{\text {out }}\right| x\) tf \(/ L\)
Equation 9

In the PWM control type, when \(\mathrm{tf}=\) toff, the inductor current will be continuous and the operation of CH 2 will be continuous inductor current mode. When the device is in continuous inductor current mode and operates in steady-state conditions, the variation of IL1 and IL2 are same:


Therefore, the duty cycle in continuous inductor current mode is:

Duty \(=\) ton \(/(\) ton + toff \()=\mid\) Vout \(/\left(\mid\right.\) VOUT \(\left.\mid+\mathrm{V}_{\text {IN }}\right)\)
Equation 11

If the input voltage ( \(\mathrm{V}_{\mathrm{IN}}\) ) equal to V out, \(^{\text {the output current (lout) is: }}\)


If lout is larger than Equation 12, the device switches to continuous inductor current mode. The Lx peak current flowing through \(L\) (ILxmax) is:


The Lx peak current limit circuit operates in both modes if the ILxmax becomes more than the Lx peak current limit. When considering the input and output conditions or selecting the external components, please pay attention to ILxmax.

Notes: The above calculations are based on the ideal operation of the device. They do not include the losses caused by the external components or \(L x\) switch. The actual maximum output current will be \(70 \%\) to \(90 \%\) of the above calculation results. Especially, if IL is large or \(\mathrm{V}_{\text {IN }}\) is low, it may cause the switching losses.

\section*{R1286K}

NO.EA-283-191114

\section*{APPLICATION INFORMATION}

\section*{Typical Application Circuits}


R1286KxxxX (Fixed Output Voltage Type) Typical Application Circuit


R1286K001B (Adjustable Output Voltage Type) Typical application Circuit

Recommended External Components
\begin{tabular}{c|l}
\hline Symbol & \multicolumn{1}{c}{ Description } \\
\hline L1 & VLF302510M-4R7M (TDK), VLF3010S-4R7M (TDK) \\
\hline L2 & VLF4012S-4R7M (TDK), NR4012T4R7M (TAIYOYUDEN) \\
\hline C1(CIN \(),\) C2(Coutn), C3(CoutP) & \(4.7 \mu \mathrm{~F}, ~ 2012\) size X5R T=0.85max \\
\hline C4 (CREF \(^{(1)}\) & \(0.1 \mu \mathrm{~F}, ~ 0603\) size \\
\hline
\end{tabular}
(1) R1286K001B Only

\section*{Precautions for Selecting External Components}
- Place a ceramic capacitor of \(4.7 \mu \mathrm{~F}\) or more (C1) between VCC pin/PVCC pin and GND pin/ PGND pin.
- Place a ceramic capacitor of \(4.7 \mu \mathrm{~F}\) or more (C2, C3) between VOUTP pin / VOUTN pin and GND.
- Place a ceramic capacitor of \(0.1 \mu \mathrm{~F}\) to \(2.2 \mu \mathrm{~F}\) (C4) between VREF pin and GND. [ R1286K001B ]
- Step-up DC/DC Converter Output Voltage Setting [R1286K001B]

The output voltage Voutp of the step-up DC/DC converter is controlled with maintaining the \(\mathrm{V}_{\text {FBP }}\) as 1.0 V .
Voutp can be set with adjusting the values of R1 and R2 as in the next formula.
\[
V_{\text {outp }}=V_{\text {FBP }} \times(\mathrm{R} 1+\mathrm{R} 2) / \mathrm{R} 1
\]

Voutp can be set from 4.6 V to 5.8 V . The appropriate value range of R 1 is from \(20 \mathrm{k} \Omega\) to \(60 \mathrm{k} \Omega\).

\section*{- Inverting DC/DC Converter Output Voltage Setting [ R1286K001B ]}

The output voltage Vouts of the inverting DC/DC converter is controlled with maintaining the \(\mathrm{V}_{\text {FBN }}\) as OV.
Voutn can be set with adjusting the values of R1 and R2 as in the next formula.
\[
V_{\text {outn }}=V_{\text {FBN }}-\left(V_{\text {REF }}-V_{\text {FBn }}\right) \times R 5 / R 4
\]

Voutn can be set from -2.0 V to -6.0 V . The appropriate value range of R 4 is from \(2.5 \mathrm{k} \Omega\) to \(60 \mathrm{k} \Omega\).

\section*{- Phase Compensation of Step-up DC/DC Converter [R1286K001B]}

DC/DC converter's phase may lose 180 degree by external components of \(L\) and \(C\) and load current. Because of this, the phase margin of the system will be less and the stability will be worse. Therefore, the phase must be gained.

Zero will be formed with R1 and C5.
C5 [pF] = \(300 / \mathrm{R} 1[\mathrm{k} \Omega]\)

If the noise of the system is large, the output noise affects the feedback and the operation may be unstable. In that case, another resistor R3 will be set. The appropriate value range is from \(10 \Omega\) to \(1 \mathrm{k} \Omega\).

\section*{R1286K}

NO．EA－283－191114

\section*{TECHNICAL NOTES}

The performance of a power source circuit using this device is highly dependent on a peripheral circuit．A peripheral component or the device mounted on PCB should not exceed a rated voltage，a rated current or a rated power．When designing a peripheral circuit，please be fully aware of the following points．
－Wire the bypass capacitor（C1）between the VCC pin，the GND pin，or the PVCC pin as short as possible． The GND pin should be connected to the GND plane of the PCB．
－Wire the GND of the output capacitors（C2，C3）to the GND pin of the device as short as possible．
－The wiring among each GND line of C1，C2，and C3 and the GND pin of the device must be short as possible via the device．
－The wiring between Lxp pin，Lxn pin and inductor each should be as short as possible and mount output capacitors（C2 and C3）as close as possible to the Voutp，Voutn each．
－Input impedance of Voutps pin，Voutns pin，VFBP pin，and VFBN pin is high，therefore，the external noise may affect the performance．The coupling capacitance between these nodes and switching lines must be as short as possible．
－As shown in the diagrams of the current paths of boost DC／DC converter and the current path of inverting DC／DC converter，the parasitic impedance，inductance，and the capacitance in the parts pointed with red arrows have an influence against the stability of the DC／DC converters and become a cause of the noise． Therefore，such parasitic elements must be made as small as possible．Wiring of the current paths must be short and thick．


PCB Layout
R1286K Board Layout [PKG: DNF (PLP) 2730-12]


R1286K001B (Adjustable Output Voltage Type) Board Layout
(1) \(\mathrm{X}: \mathrm{A}\) to N (Provided, except "B" and "I")

Nisshinbo Micro Devices Inc.

\section*{R1286K}

NO.EA-283-191114

\section*{TYPICAL CHARACTERISTICS}

Typical Characteristics are intended to be used as reference data, they are not guaranteed.
1) Output Voltage vs. Output Current

R1286KxxxX \({ }^{(1)}(\) Voutp \(=4.6 \mathrm{~V})\)
( \(\mathrm{Ta}=25^{\circ} \mathrm{C}\) )


R1286KxxxX (Voutp \(=5.8 \mathrm{~V})\)
\(\left(\mathrm{Ta}=25^{\circ} \mathrm{C}\right)\)

\(R 1286 K x x x X\left(V_{\text {OUTN }}=-5.4 \mathrm{~V}\right)\)
\[
\left(\mathrm{Ta}=25^{\circ} \mathrm{C}\right)
\]

R1286KxxxX (Voutp = 5.4 V)
\(\left(\mathrm{Ta}=25^{\circ} \mathrm{C}\right)\)

\(R 1286 K x x x X\left(V_{\text {outn }}=-4.9 \mathrm{~V}\right)\)
\[
\left(\mathrm{Ta}=25^{\circ} \mathrm{C}\right)
\]

\(R 1286 K x x x X\left(V_{\text {OUTN }}=-6.0 \mathrm{~V}\right)\)
( \(\mathrm{Ta}=25^{\circ} \mathrm{C}\) )


\section*{2) Efficiency vs. Output Current}
\[
\begin{array}{r}
\mathrm{R} 1286 \mathrm{KxxxX}\left(\mathrm{~V}_{\text {OUtP }}=4.6 \mathrm{~V}, \mathrm{~V}_{\text {OUTN }}=-4.9 \mathrm{~V}\right) \\
\left(\mathrm{Ta}=25^{\circ} \mathrm{C}\right)
\end{array}
\]


R1286KxxxX \(\left(\mathrm{V}_{\text {OUtP }}=5.8 \mathrm{~V}, \mathrm{~V}_{\text {OUtN }}=-6.0 \mathrm{~V}\right)\) \(\left(\mathrm{Ta}=25^{\circ} \mathrm{C}\right)\)


R1286KxxxX \(\left(\mathrm{V}_{\text {OUtP }}=5.4 \mathrm{~V}\right.\), \(\left.\mathrm{V}_{\text {OUtN }}=-5.4 \mathrm{~V}\right)\)
\(\left(\mathrm{Ta}=25^{\circ} \mathrm{C}\right)\)


\section*{R1286K}

NO.EA-283-191114
3) Turn-on/Turn-off Waveform by CE
\(\mathrm{R} 1286 \mathrm{~K} \times 02 \mathrm{~A}\left(\mathrm{~V}_{\text {IN }}=3.7 \mathrm{~V}\right.\), loutp \(=\) loutn \(\left.=0 \mathrm{~mA}\right)\)


R1286Kx05A ( \(\mathrm{V}_{\mathrm{IN}}=3.7 \mathrm{~V}\), loutp \(=\) loutn \(=0 \mathrm{~mA}\), Coutp \(=\) Coutn \(\left.=4.7 \mu \mathrm{~F}\right)\)


\(R 1286 K x 05 A\left(\mathrm{~V}_{\text {in }}=3.7 \mathrm{~V}\right.\), loutp \(=\) loutn \(=0 \mathrm{~mA}\), Coutp \(=10 \mu \mathrm{~F} \times 2\), Coutn \(\left.=4.7 \mu \mathrm{~F}\right)\)



\section*{4) VOUTN Waveform with S-Wire Control R1286Kx02A}
\((-4.9 \mathrm{~V} \leq\) Voutn \(\leq-2.4 \mathrm{~V}\), loutp \(=\) loutn \(=0 \mathrm{~mA})\)
\(\left(\mathrm{Ta}=25^{\circ} \mathrm{C}\right)\)

5) Load Transient Response

6) Line Transient Response


R1286Kx02A
\((-2.4 \mathrm{~V} \leq\) Voutn \(\leq-4.9 \mathrm{~V}\), loutp \(=\) Ioutn \(=0 \mathrm{~mA})\)
\(\left(\mathrm{Ta}=25^{\circ} \mathrm{C}\right)\)



\section*{R1286K}

NO.EA-283-191114
7) UVLO Voltage vs. Temperature

R1286KxxxX

9) VOUTN Voltage vs. Temperature

R1286KxxxC


R1286KxxxG

8) VOUTP Voltage vs. Temperature

R1286Kx02X


R1286KxxxX

10) VFBN Voltage vs. Temperature R1286K001B

12) LXP Current Limit vs. Temperature R1286KxxxX

14) Oscillator Frequency vs. Temperature

R1286KxxxX

11) VREF Voltage vs. Temperature

R1286K001B

13) LXN Limit Current vs. Temperature

R1286KxxxX


\section*{R1286K}

NO.EA-283-191114
15) Maxduty1 vs. Temperature

R1286KxxxX

17) CH1 Soft-start Time vs. Temperature R1286KxxxX

19) CH2 Soft-start Time vs. Temperature R1286K001B

16) Maxduty2 vs. Temperature

R1286KxxxX

18) CH2 Soft-start Time vs. Temperature R1286KxxxG

20) Delay Time for Protection vs. Temperature R1286KxxxX


The power dissipation of the package is dependent on PCB material, layout, and environmental conditions. The following measurement conditions are based on JEDEC STD. 51-7.

\section*{Measurement Conditions}
\begin{tabular}{ll}
\hline \multicolumn{1}{c|}{ Item } & \multicolumn{1}{c}{ Measurement Conditions } \\
\hline Environment & Mounting on Board (Wind Velocity \(=0 \mathrm{~m} / \mathrm{s}\) ) \\
\hline Board Material & Glass Cloth Epoxy Plastic (Four-Layer Board) \\
\hline Board Dimensions & \(76.2 \mathrm{~mm} \times 114.3 \mathrm{~mm} \times 0.8 \mathrm{~mm}\) \\
\hline Copper Ratio & \begin{tabular}{l} 
Outer Layer (First Layer): Less than 95\% of 50 mm Square \\
Inner Layers (Second and Third Layers): Approx. 100\% of 50 mm Square \\
Outer Layer (Fourth Layer): Approx. \(100 \%\) of 50 mm Square
\end{tabular} \\
\hline Through-holes & \(\quad\)\begin{tabular}{l}
\(\quad 0.3 \mathrm{~mm} \times 23 \mathrm{pcs}\) \\
\hline
\end{tabular} \\
\hline
\end{tabular}

Measurement Result
\(\left(\mathrm{Ta}=25^{\circ} \mathrm{C}, \mathrm{Tjmax}=125^{\circ} \mathrm{C}\right)\)
\begin{tabular}{l|c}
\hline \multicolumn{1}{c|}{ Item } & Measurement Result \\
\hline Power Dissipation & 3100 mW \\
\hline Thermal Resistance ( \(\theta \mathrm{ja}\) ) & \(\theta \mathrm{ja}=32^{\circ} \mathrm{C} / \mathrm{W}\) \\
\hline Thermal Characterization Parameter ( \(\psi \mathrm{j} \mathrm{t})\) & \(\psi j \mathrm{j}=8^{\circ} \mathrm{C} / \mathrm{W}\) \\
\hline
\end{tabular}

日ja: Junction-to-Ambient Thermal Resistance
\(\psi j\) t: Junction-to-Top Thermal Characterization Parameter


Power Dissipation vs. Ambient Temperature


Measurement Board Pattern


DFN(PLP)2730-12 Package Dimensions (Unit: mm)
1. The products and the product specifications described in this document are subject to change or discontinuation of production without notice for reasons such as improvement. Therefore, before deciding to use the products, please refer to our sales representatives for the latest information thereon.
2. The materials in this document may not be copied or otherwise reproduced in whole or in part without prior written consent of our company.
3. Please be sure to take any necessary formalities under relevant laws or regulations before exporting or otherwise taking out of your country the products or the technical information described herein.
4. The technical information described in this document shows typical characteristics of and example application circuits for the products. The release of such information is not to be construed as a warranty of or a grant of license under our company's or any third party's intellectual property rights or any other rights.
5. The products listed in this document are intended and designed for use as general electronic components in standard applications (office equipment, telecommunication equipment, measuring instruments, consumer electronic products, amusement equipment etc.). Those customers intending to use a product in an application requiring extreme quality and reliability, for example, in a highly specific application where the failure or misoperation of the product could result in human injury or death (aircraft, spacevehicle, nuclear reactor control system, traffic control system, automotive and transportation equipment, combustion equipment, safety devices, life support system etc.) should first contact us.
6. We are making our continuous effort to improve the quality and reliability of our products, but semiconductor products are likely to fail with certain probability. In order to prevent any injury to persons or damages to property resulting from such failure, customers should be careful enough to incorporate safety measures in their design, such as redundancy feature, fire containment feature and fail-safe feature. We do not assume any liability or responsibility for any loss or damage arising from misuse or inappropriate use of the products.
7. Anti-radiation design is not implemented in the products described in this document.
8. The X-ray exposure can influence functions and characteristics of the products. Confirm the product functions and characteristics in the evaluation stage.
9. WLCSP products should be used in light shielded environments. The light exposure can influence functions and characteristics of the products under operation or storage.
10. There can be variation in the marking when different AOI (Automated Optical Inspection) equipment is used. In the case of recognizing the marking characteristic with AOI, please contact our sales or our distributor before attempting to use AOI.
11. Please contact our sales representatives should you have any questions or comments concerning the products or the technical information.

\section*{NiSSHiNBO}

\section*{Nisshinbo Micro Devices Inc.}

\section*{Official website \\ https://www.nisshinbo-microdevices.co.jp/en/}

Purchase information
https://www.nisshinbo-microdevices.co.jp/en/buy/```


[^0]:    ${ }^{(1)} \mathrm{X}$ : A to N (Provided except B and I)

[^1]:    ${ }^{(1)}$ Fixed Output Voltage type only can select the delay time of 40 msec (Typ).
    ${ }^{(2)}$ Refer to Voltage Combination List for details.
    ${ }^{(3)}$ Selectable in 0.1 V step
    ${ }^{(4)}$ Refer to the TIMING CHART of S-Wire for details.
    ${ }^{(5)}$ Dynamically adjustable output voltage with S-Wire

[^2]:    ${ }^{(1)} \mathrm{X}$ : A to N (Provided, except "B" and "I")

[^3]:    ${ }^{(1)} \mathrm{X}: \mathrm{A}$ to N (Provided, except " B " and " " ")
    ${ }^{(2)}$ TEST pin must be connected to the GND or leaving it open.

[^4]:    ${ }^{(1)} \mathrm{X}$ : A to N (Provided, except "B" and "I")
    ${ }^{(2)}$ Refer to POWER DISSIPATION for detailed information.

[^5]:    ${ }^{(1)} \mathrm{X}$ : A to N (Provided, except "B" and "I")

[^6]:    (1) $\mathrm{X}: \mathrm{A}$ to N (Provided, except "B" and " ")

