CMOS Universal Asynchronous Receiver Transmitter (UART) #### Features - Operation Guaranteed from D.C. to 8.0MHz - Low Power CMOS Design - Programmable Word Length, Stop Bits and Parity - Automatic Data Formatting and Status Generation - Compatible with Industry Standard UARTs - Single +5V Power Supply ## Description The HD-6402 is a CMOS UART for interfacing computers or microprocessors to an asynchronous serial data channel. The receiver converts serial start, data, parity, and stop bits. The transmitter converts parallel data into serial form and automatically adds start, parity, and stop bits. The data word length can be 5, 6, 7 or 8 bits. Parity may be odd or even. Parity checking and generation can be inhibited. The stop bits may be one or two or one and one-half when transmitting 5 bit code. The HD-6402 can be used in a wide range of applications including modems, printers, peripherals and remote data acquisition systems. Utilizing the HARRIS advanced scaled SAJI IV CMOS process permits operation clock frequencies up to 8.0MHz (500K Baud). Power requirements, by comparison, are reduced from 300mW to 10mW. Status logic increases flexibility and simplifies the user interface. #### **Pinout TOP VIEW** 40 TRC 39 EPE 38 CLS1 VCC D1 GND d3 37 CLS2 RRD RBR8 36 SBS RBR7 d6 35 PI 34 CRL 33 TBR8 RBR6 RBR5 d8 32 | TBR7 31 | TBR6 30 | TBR5 29 | TBR4 28 | TBR3 RBR4 FIS RBR3 □10 RBR2 C11 RBR1 | 12 PE 013 FE 014 TBR2 OE 0 15 26 TBR1 SFD | 16 25 TRO 24 | TRE 23 | TBRL 22 | TBRE RRC C 17 21 D MR DRR | 18 DR 119 RRI C 20 ດກຸດ ODD EVEN EVEN NONE NONE 1.5 1 1.5 1 ODD ODD EVEN EVEN NONE NONE ODD ODD EVEN EVEN NONE NONE ODD ODD EVEN EVEN NONE CAUTION: These devices are sensitive to electronic discharge. Proper I.C. handling procedures should be followed. ## HD-6402 # Pin Description | PIN | TYPE | SYMBOL | DESCRIPTION | | | | | | |-----|------|--------|--|--|--|--|--|--| | 1 | | vcc. | Positive Voltage Supply | | | | | | | 2 | | NC | No connection | | | | | | | 3 | | GND | Ground .
A high level on RECEIVER REGISTER | | | | | | | 4 | ١ | RRD | A high level on RECEIVER REGISTER
DISABLE forces the receiver holding out-
puts RBR1-RBR8 to a high impedance state.
The contents of the RECEIVER BUFFER | | | | | | | 5 | 0 | RBR8 | The contents of the RECEIVER BUFFER
REGISTER appear on these three-state out-
puts. Word formats less than 8 characters
are right justified to RBR1. | | | | | | | 6 | 0 | RBR7 | See Pin 5-RBR8 | | | | | | | 7 | 0 | RBR6 | See Pin 5-RBR8 | | | | | | | 8 | 0 | RBR5 | See Pin 5-RBR8 | | | | | | | 9 | 0 | RBR4 | See Pin 5-RBR8 | | | | | | | 10 | 0 | RBR3 | See Pin 5-RBR6 | | | | | | | 11 | 0 | RBR2 | See Pin 5-RBR8 | | | | | | | 12 | 0 | RBR1 | See Pin 5-RBR8 | | | | | | | 13 | 0 | PE | A high level on PARITY ERROR Indicates received parity does not match parity programmed by control bits. When parity is inhibited this output is low. | | | | | | | 14 | 0 | FE | A high level on FRAMING ERROR indicates the first stop bit was invalid. | | | | | | | 15 | 0 | OE | A high level on OVERRUN ERROR indi-
cates the data received flag was not cleared
before the last character was transferred to
the receiver buffer register. | | | | | | | PIN | TYPE | SYMBOL | DESCRIPTION | |-----|------|--------|---| | 16 | 1 | SFD | A high level on STATUS FLAGS DISABLE forces the outputs PE, FE, OE, DR, TBRE to a high impedance state. | | 17 | I | RRC | The Receiver register clock is 16X the receiver data rate. | | 18 | 1 | DRR | A low level on DATA RECEIVED RESET clears the data received output DR to a low tevel. | | 19 | 0 | DR | A high level on DATA RECEIVED indicates a
character has been received and transferred
to the receiver buffer register. | | 20 | 1 | RRI | Serial data on RECEIVER REGISTER INPUT is clocked into the receiver register. | | 21 | 1 | MR | A high level on MASTER RESET clears PE, FE, OE, and DR to a low level and sets the transmitter register empty (TRE) to a high level 18 clock cycles after MR falling edge. MR does not clear the receiver buffer register. This input must be pulsed at least once after power up. The HD-6402 must be master reset after power up. The reset pulse should meet VIH and t _{MR} . Wait 18 clock cycles after the falling edge of MR before beginning operation. | | 22 | o | TBRE | A high level on TRANSMITTER BUFFER REGISTER EMPTY indicates the transmitter buffer register has transferred its data to the transmitter register and is ready for new data. | ^{*}A $0.1\mu F$ decoupling capacitor from the V_{CC} pin to the GND pin is recommended. | PIN | TYPE | SYMBOL | DESCRIPTION | |-----|------|--------|---| | 23 | l | TBRL | A low level on TRANMITTER BUFFER REGISTER LOAD transfers data from inputs TBR1-TBR8 into the transmitter buffer register. A low to high transition on TBRL initiates data transfer to the transmitter register. If busy, transfer is automatically delayed so that the two characters are transmitted end to end. | | 24 | .0 | TRE | A high level on TRANSMITTER REGISTER EMPTY indicates completed transmission of a character including stop bits. | | 25 | 0 | TRO | Character data, start data and stop bits appear serially at the TRANSMITTER REGISTER OUTPUT. | | 26 | 1 | TRB1 | Character data is loaded into the TRANS-
MITTER BUFFER REGISTER via inputs
TBR1-TBR8. For character formats less
than 8 bits the TBR8, 7, and 6 inputs are
ignored corresponding to their program-
med word length. | | 27 | ı | TBR2 | See Pin 26 - TBR1. | | 28 | 1 | TBR3 | See Pin 26 - TBR1. | | 29 | ı | TBR4 | See Pin 26 - TBR1. | | 30 | ı | TBR5 | See Pin 26 - TBR1. | | PIN | TYPE | SYMBOL | DESCRIPTION | |-----|------|--------|---| | 31 | 1 | TBR6 | See Pin 26 - TBR1. | | 32 | 1 | TBR7 | See Pin 26 - TBR1. | | 33 | ı | TBR8 | See Pin 26 - TBR1. | | 34 | Ī | CRL | A high level on CONTROL REGISTER LOAD loads the control register with the control word is latched on the falling edge of CRL. See Figure 2. | | 35 | I | PI | A high level on PARITY INHIBIT inhibits parity generation, parity checking and forces PE output low. | | 36 | l' | SBS | A high level on STOP BIT SELECT selects
1.5 stop bits for 5 character format and 2 stop
bits for other lengths. | | 37 | l | CLS2 | These inputs program the CHARACTER LENGTH SELECTED (CLS1 low CLS2 low 5 bits) (CLS1 high CLS2 low 6 bits) (CLS1 low CLS2 high 7 bits) (CLS1 high CLS2 high 8 bits). | | 38 | 1 1 | CLS1 | See Pin 37 - CLS2. | | 39 | 1 | EPE | When PI is low, a high level on EVEN PARITY
ENABLE generates and checks even parity.
A low level selects odd parity. | | 40 | 1 | TRC | The TRANSMITTER REGISTER CLOCK is 16X the transmit data rate. | #### Transmitter Operation The transmitter section accepts parallel data, formats the data and transmits the data in serial form on the Transmitter Register Output (TRO) terminal (See serial data format). Data is loaded from the inputs TBR1-TBR8 into the Transmitter Buffer Register by applying a logic low on the Transmitter Buffer Register Load (TBRL) input (A). Valid data must be present at least t_{set} prior to and thold following the rising edge of TBRL. If words less than 8 bits are used, only the least significant bits are transmitted. The character is right justified, so the least significant bit corresponds to TBR1 (B). The rising edge of TBRL clears Transmitter Buffer Register Empty (TBRE). 0 to 1 Clock cycles later, data is transferred to the transmitter register, the Transmitter Register Empty (TRE) pin goes to a low state, TBRE is set high and serial data information is transmitted. The output data is clocked by Transmitter Register Clock (TRC) at a clock rate 16 times the data rate. A second low level pulse on TBRL loads data into the Transmitter Buffer Register (C). Data transfer to the transmitter register is delayed until transmission of the current data is complete (D). Data is automatically transferred to the transmitter register and transmission of that character begins one clock cycle later. #### Receiver Operation Data is received in serial form at the Receiver Register Input (RRI). When no data is being received, RRI must remain high. The data is clocked through the Receiver Register Clock (RRC). The clock rate is 16 times the data rate. A low level on Data Received Reset (DRR) clears the Data Receiver (DR) line (A). During the first stop bit data is transferred from the Receiver Register to the Receiver Buffer Register (RBR) (B). If the word is less than 8 bits, the unused most significant bits will be a logic low. The output character is right justified to the least significant bit RBR1. A logic high on Overrun Error (OE) indicates overruns. An overrun occurs when DR has not been cleared before the present character was transferred to the RBR. One clock cycle later DR is reset to a logic high, and Framing Error (FE) is evaluated (C). A logic high on FE indicates an invalid stop bit was received, a framing error. A logic high on Parity Error (PE) indicates a parity error. #### Start Bit Detection The receiver uses a 16X clock timing. The start bit could have occurred as much as one clock cycle before it was detected, as indicated by the shaded portion (A). The center of the start bit is defined as clock count 7½. If the receiver clock is a symmetrical square wave, the center of the start bit will be located within $\pm \%$ clock cycle, $\pm 1/32$ bit or 3.125% giving a receiver margin of 46.875%. The receiver begins searching for the next start bit at the center of the first stop bit. 45 CMOS DATA COMMUNICATIONS ## Specifications HD-6402R T-75-37-05 #### **Absolute Maximum Ratings** Supply Voltage +8.0 Volts #gc 25°C/W (CERDIP package) Input, Output or I/O Voltage Applied GND - 0.5V to #ga 70°C/W (CERDIP package) VCC + 0.5V Gate Count 1,643 Gates Storage Temperature Range -65°C to +150°C Junction Temperature +150°C Maximum Package Power Dissipation 1 Watt Lead Temperature (Soldering, Ten Seconds) +275°C CAUTION: Stresses above those listed in the "Absolute Maximum Ratings" may cause permanent damage to the device. This is a stress only rating and operation of the device at these or any other conditions above those indicated in the operational sections of this specification is not implied. ## **Operating Conditions** | Operating Voltage Range | +4.5V to +5.5V | |------------------------------|----------------| | Operating Temperature Ranges | | | HD-6402R-9 | 40°C to +85°C | | HD-6402R-2/-8 | 55°C to +125°C | Electrical Specifications V_{CC} = 5.0V \pm 10%, T_{A} = -400C to +850C (HD-6402R-9), T_{A} = -550C to +1250C (HD-6402R-2/-8) | | SYMBOL | PARAMETER | MIN | MAX | UNITS | CONDITIONS | |------|-----------------|---------------------------------|-----------------|------|--------|---| | Ī | V _{IH} | Logical "1" Input Voltage | 2.0
2.2 | | V
V | HD-6402R-9
HD-6402R-2/-8 | | Ī | VIL | Logical "0" Input Voltage | | 0.8 | ٧ | | | | VIHC | Logical "1" Clock Input Voltage | 2.0 | | V | HD-6402R-9 | | | VILC | Logical "0" Clock Input Voltage | 2.2 | 0.8 | ٧ | HD-6402R-2/8 | | D.C. | I _I | Input Leakage | -1.0 | 1.0 | μΑ | V _{IN} = V _{CC} or GND | | | Voн | Logical "1" Output Voltage | 3.0
VCC -0.4 | | V
V | l _{OH} = -2.5mA
l _{OH} = -100 <i>μ</i> A | | ſ | VOL | Logical "0" Output Voltage | | 0.40 | ٧ | I _{OL} = +2.5mA | | Ī | lo | Output Leakage | -1.0 | 1.0 | μΑ | VO = VCC or GND | | Ī | IccsB | Standby Current | | 100 | μΑ | V _{IN} = GND or V _{CC}
V _{CC} = 5.5V, Output Open | | | ГССОР | Operating Supply Current* | | 2.0 | mA | V _{CC} = 5.5V, Clock Freq. = 2MHz, V _{IN} = V _{CC} or GND, Outputs Open. | ^{*}Guaranteed , but not 100% tested. ## Capacitance T_A = 25°C | | 1 | | 7 | | |-----------------|--------------------|--------|---------|---| | SYMBOL | PARAMETER | TYPICA | L UNITS | CONDITIONS | | C _{IN} | Input Capacitance | 8.0 | pF | Freq. = 1MHz, all measure-
ments are referenced to | | COUT | Output Capacitance | 10.0 | pF | device GND | Electrical Specifications V_{CC} = 5.0V \pm 10%, T_A = -40°C to +85°C (HD-6402R-9), T_A = -55°C to +125°C (HD-6402R-2/-8) | SYMBOL | PARAMETER | MIN | MAX | UNITS | CONDITIONS | |----------------------|---|---|--|--|--| | (1) fCLOCK | Clock Frequency | D.C. | 2.0 | MHz | | | (2) ^t pw | Pulse Widths CRL, DRR, TBRL | 150 | | ns | C _L = 50pF | | (3) ^t MR | Pulse Width MR | 150 | | ns | See Switching Time | | (4) ^t SET | Input Data Setup Time | 50 | | ns | Waveforms 1, 2, 3 | | (5) tHOLD | Input Data Hold Time | 60 | | пв | | | (6) ^t EN | Output Enable Time | | 160 | ns | | | | (1) f _{CLOCK} (2) t _{pw} (3) t _{MR} (4) t _{SET} (5) t _{HOLD} | (1) fGLOCK Clock Frequency (2) tpw Pulse Widths CRL, DRR, TBRL (3) tMR Pulse Width MR (4) tSET Input Data Setup Time (5) tHOLD Input Data Hold Time | (1) fGLOCK Clock Frequency D.C. (2) tpw Pulse Widths CRL, DRR, TBRL 150 (3) tMR Pulse Width MR 150 (4) tSET Input Data Setup Time 50 (5) tHOLD Input Data Hold Time 60 | (1) fGLOCK Clock Frequency D.C. 2.0 (2) tpw Pulse Widths CRL, DRR, TBRL 150 (3) tMR Pulse Width MR 150 (4) tSET Input Data Setup Time 50 (5) tHOLD Input Data Hold Time 60 | (1) fCLOCK Clock Frequency D.C. 2.0 MHz (2) tpw Pulse Widths CRL, DRR, TBRL 150 ns (3) tMR Pulse Width MR 150 ns (4) tSET Input Data Setup Time 50 ns (5) tHOLD Input Data Hold Time 60 ns | ## Specifications HD-6402B #### **Absolute Maximum Ratings** Supply Voltage+8.0 Volts Input, Output or I/O Voltage AppliedGND - 0.5V to VCC + 0.5V Storage Temperature Range-65°C to +150°C Maximum Package Power Dissipation1 Watt T-75-37-05 CAUTION: Stresses above those listed in the "Absolute Maximum Ratings" may cause permanent damage to the device. This is a stress only rating and operation of the device at these or any other conditions above those indicated in the operational sections of this specification is not implied. ## **Operating Conditions** | Operating Voltage Range | +4.5V to +5.5V | |------------------------------|----------------| | Operating Temperature Ranges | 4.07 10 10.07 | | HD-6402B-9 | | | HD-6402B-2/-8 | | | | 55°C to +125°C | **Electrical Specifications** VCC = $5.0V \pm 10\%$, $T_A = -40^{\circ}C$ to +85°C (HD-6402B-9), $T_A = -55^{\circ}C$ to +125°C (HD-6402B-2/-8) | | SYMBOL | PARAMETER | MIN | MAX | UNITS | CONDITIONS | |------|-----------------|---------------------------------|-----------------|------|--------|---| | | VIH | Logical "1" Input Voltage | 2.0
2.2 | | V
V | HD-6402B-9
HD-6402B-2/-8 | | | VIL | Logical "0" Input Voltage | | 0.8 | V | | | | VIHC | Logical "1" Clock Input Voltage | 2.0 | | V | HD-6402B-9 | | | VILC | Logica! "0" Clock Input Voltage | 2.2 | 0.8 | V | HD-6402B-2/-8 | | D.C. | lį | Input Leakage | -1.0 | 1.0 | μA | V _{IN} = V _{CC} or GND | | | V _{OH} | Logical "1" Output Voltage | 3.0
VCC -0.4 | | V
V | I _{OH} = -2.5mA
I _{OH} = -100 <i>µ</i> A | | | VOL | Logical "0" Output Voltage | | 0.40 | ٧ | I _{OL} = +2.5mA | | | lo | Output Leakage | -1.0 | 1.0 | μΑ | VO = VCC or GND | | | ICCSB | Standby Current | | 100 | μΑ | V _{IN} = GND or V _{CC}
V _{CC} = 5.5V, Output Open | | | ICCOP | Operating Supply Current* | | 2.0 | mA | V _{CC} = 5.5V, Clock Freq.
2MHz, V _{IN} = V _{CC} or GND
Outputs Open | *Guaranteed but not 100% tested. #### Capacitance TA = 250C | SYMBOL | PARAMETER | TYPICAL | UNITS | CONDITIONS | |--------|--------------------|---------|-------|------------------------------------| | CIN | Input Capacitance | 8.0 | pF | Freq. = 1MHz, all measure- | | COUT | Output Capacitance | 10.0 | pF | ments are referenced to device GND | Electrical Specifications V_{CC} = 5.0V \pm 10%, T_{A} = -40°C to +85°C (HD-6402-9), T_{A} = -55°C to +125°C (HD-6402-2/-8) | SYMBOL | PARAMETER | MIN | MAX | UNITS | CONDITIONS | |------------------------|-----------------------------|------|-----|-------|---| | (1)fCLOCK | Clock Frequency | D.C. | 8.0 | MHz | | | (2) tpw | Pulse Widths CRL. DRR, TBRL | 75 | | ns | C _L = 50pF | | C. (3) t _{MR} | Pulse Width MR | 150 | 1 | ns | See Switching Time
Waveforms 1, 2, 3 | | (4) tSET | Input Data Setup Time | 20 | | ns | 114101011113 1, 2, 0 | | (5) tHOLD | Input Data Hold Time | 20 | | ns | | | (6) tEN | Output Enable Time | | 35 | ns | | CMOS DATA OMMUNICATIONS # Switching Waveforms FIGURE 1. DATA INPUT CYCLE FIGURE 2. CONTROL REGISTER LOAD CYCLE T. 75-37-05 FIGURE 3. STATUS FLAG OUTPUT ENABLE TIME OR DATA OUTPUT ENABLE TIME ## Interfacing With The HD-6402 TYPICAL SERIAL DATA LINK # A.C. Testing Input, Output Waveform A.C. Testing: All input signals must switch between VIL - 0.4V and VIH + 0.4V. Input rise and fall times are driven at 1ns/V.