

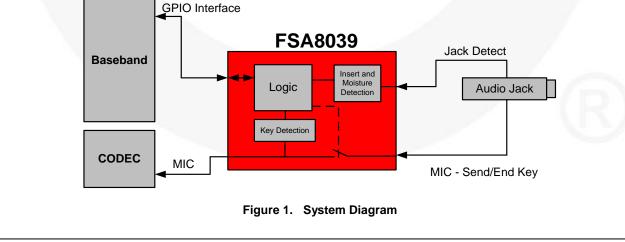
FSA8039 Audio Jack Detection and Configuration Switch with Moisture Sensing

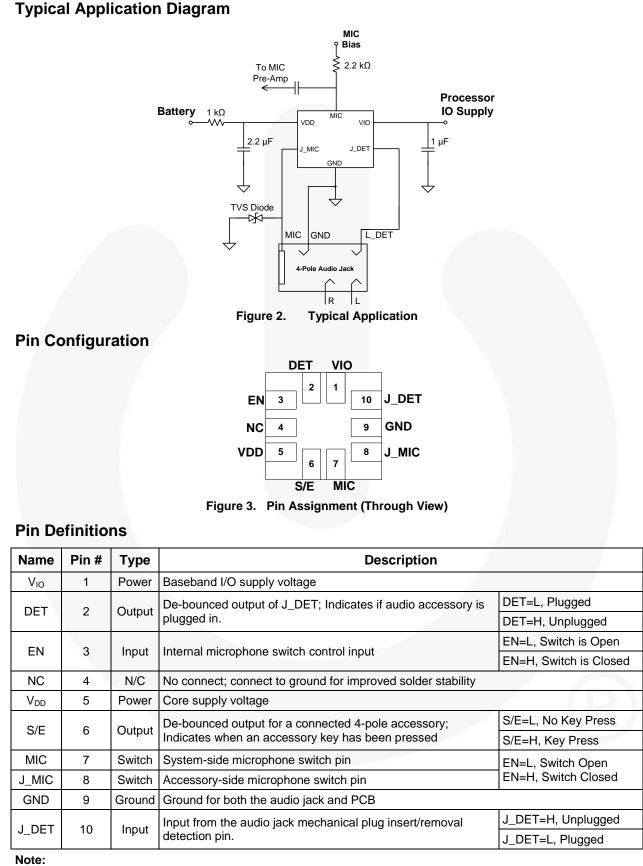
Features

Detection	Accessory Plug-In 3-Pole or 4-Pole Audio Jack Send / End Key Pressed Moisture	
Switch Type	MIC	
V _{DD}	2.5 V to 4.5 V	
V _{IO}	1.6 to V _{DD}	
THD (MIC)	0.01% Typical	
ESD (Air Gap)	15 kV	
Operating Temperature	-40°C to 85°C	
	10-Lead UMLP,	
Package	1.4 mm × 1.8 mm × 0.5 mm,	
	0.4 mm Pitc	
Top Mark	NF	
Ordering Information	FSA8039UMSX_F106	

Applications

- 3.5 mm and 2.5 mm Audio Jacks
- Cellular Phones, Smart Phones
- MP3 and PMP


Description


The FSA8039 is an audio jack detection switch for 3-pole and 4-pole accessories. The FSA8039 features moisture sensing, which prevents false positive detection of accessories in the audio jack. The FSA8039 also features an integrated MIC switch that allows a processor to configure attached accessories. The architecture is designed to allow common third-party headphones to be used for listening to music from mobile handsets, personal media players, and portable peripheral devices.

- Prevents False Detection of Accessories in the Audio Jack when Moisture is Present
- Removes Audio Jack Pop & Click Caused by MIC Bias
- Detects Audio Jack Accessories:
 - Standard Headphones
 - Send / End Button Presses
- Integrates a MIC Switch for 4-Pole Configuration

Related Resources

- FSA8039 Evaluation Board
- For samples and questions, please contact: <u>Analog.Switch@fairchildsemi.com</u>

Absolute Maximum Ratings

Stresses exceeding the absolute maximum ratings may damage the device. The device may not function or be operable above the recommended operating conditions and stressing the parts to these levels is not recommended. In addition, extended exposure to stresses above the recommended operating conditions may affect device reliability. The absolute maximum ratings are stress ratings only.

Symbol	Parameter			Max.	Unit	
V_{DD}, V_{IO}	DC Supply Voltages			6.0	V	
V _{SW}	MIC Switch I/O Voltage and All Input	/oltages Except J_DET	-0.5	V _{DD} +0.5	V	
V_{JD}	Input Voltage for J_DET Input		-1.5	V _{DD} +0.5	V	
I _{IK}	Input Clamp Diode Current		-50		mA	
I _{SW}	Switch I/O Current (Continuous) ⁽²⁾			50	mA	
T _{STG}	Storage Temperature Range			+150	°C	
ΤJ	Maximum Junction Temperature			+150	°C	
T_L	Lead Temperature (Soldering, 10 Seconds)			+260	°C	
		Air Gap	15.0			
	IEC 61000-4-2 System ESD	Contact	8.0			
ESD	Human Body Model,	J_DET, J_MIC, V _{DD} , V _{IO} , GND	13.0		kV	
200	JEDEC JESD22-A114,	All Other Pins	8.0		ις v	
	Charged Device Model, JEDEC JESD22-C101	All Pins	2.0			

Note:

2. The input and output negative ratings may be exceeded if the input and output diode current ratings are observed.

Recommended Operating Conditions

The Recommended Operating Conditions table defines the conditions for actual device operation. Recommended operating conditions are specified to ensure optimal performance to the datasheet specifications. Fairchild does not recommend exceeding them or designing to Absolute Maximum Ratings.

Symbol	Parameter		Max.	Unit
V_{DD}	Battery Supply Voltage	2.5	4.5	V
V _{IO}	Parallel I/O Supply Voltage		V _{DD}	V
T _A	Operating Temperature	-40	+85	°C

DC Electrical Characteristics

All typical values are at $T_A=25^{\circ}C$ unless otherwise specified.

Symbol	Parameter	V _{DD} (V)	Condition	T _A =-40 to +85°C			
				Min.	Тур.	Max.	Unit
MIC Switch	•			1 1		1	
V _{IN}	Switch Input Voltage Range	2.5 to 4.5		0		V _{DD}	V
		2.8			0.85	2.00	
Р	MIC Switch On Resistance	3.0	I _{OUT} =30 mA, V _{IN} =2.2 V		0.70	2.00	
R _{ON}	MIC SWICH ON Resistance	3.3			0.50	2.00	
		3.8			0.40	2.00	Ω
		2.8			0.45	1.50	32
R _{FLAT(ON)}	On Resistance Flatness	3.0	I _{OUT} =30 mA,		0.40	1.50	
		3.3	V _{IN} =1.6 to 2.8 V		0.35	1.50	
		3.8			0.30	1.50	
J_DET		1				-	
$J_\text{DET}_{\text{AudioV}}$	Audio Voltage on J_DET Pin	2.5 to 4.5	DET=LOW	-1		1	V
J_DET_{Audiof}	Audio Frequency on J_DET Pin	2.5 to 4.5	DET=LOW	20		20000	Hz
J_DET_{RGND}	Detection Resistance to Ground	2.5 to 4.5	Audio Accessory Inserted	0		500	kΩ
J_DET _{HYS}	Hysteresis of J_DET				200		mV
J_DET _{VIH}	J_DET Input High Voltage			0.7 × V _{DD}		V_{DD}	V
J_DET_{VIL}	J_DET Input Low Voltage			-1		$0.4 \times V_{DD}$	V
Parallel I/O							
V _{IH}	EN Input High Voltage			$0.7 \times V_{IO}$		V _{IO}	
V _{IL}	EN Input Low Voltage					0.3 × V _{IO}	V
V _{он}	DET, S/E Output High Voltage		I _{ОН} =-100 µА	0.8 × V _{IO}			v
V _{OL}	DET, S/E Output Low Voltage		I _{OL} =+100 μA			0.2 × V _{IO}	
Comparator	-				8		
V _{COMP_S/E}	Comparator Threshold for SEND/END Sensing	2.8 to 4.5	J_DET, EN=LOW		780		mV
Current		•					
I _{OFF}	Power-Off Leakage Current Through Switch	0	MIC=4.3 V			1	μA
l _{IN}	Input Leakage Current	0	EN=4.3 V			1	μA
I _{CC-SLNA}	V _{DD} Supply Sleep Mode Current (No Accessory Attached)	2.5 to 4.5	EN=LOW		1.5	3.0	μA
I _{CC-SLWA}	V _{DD} Supply Active Mode Current (Accessory Attached)	2.5 to 4.5	DET=LOW, EN=HIGH		20	27	μA

FSA8039 -
- Audio
Jack Detec
ction and
Audio Jack Detection and Configuration Switc
Ξ
with Moisture Sei
re Sensing

AC Electrical Characteristics

All typical values are for V_{CC}=3.3 V at T_A=25°C unless otherwise specified.

Symbol	Parameter	V _{DD} (V)	Conditions	Typical	Unit	
MIC Swite	MIC Switch					
THD+N	Total Harmonic Distortion + Noise	3.8	R_T =600 Ω, f=20 Hz to 20 kHz, V _{MIC} =2.2 VDC + 0.5V _{PP} Sine	0.01	%	
O _{IRR}	Off Isolation	3.8	f=20 Hz to 20 kHz, R _S =R _T =32 Ω, C_L =0 pF	-85	dB	
Con	MIC and J_MIC Switch ON Capacitance	3.8	f=1 MHz	60	pF	
COFF	MIC and J_MIC Switch OFF Capacitance	3.8	f=1 MHz	35	pF	
Parallel I/	0					
t _R , t _F	Output Edge Rates (DET, S/E)	3.8	C _L =5 pF, 20% to 80%,	20	ns	
t _{POLL}	On Time of MIC Switch for Sensing SEND/END Button Press	2.5 to 4.5	DET= LOW, EN= LOW	1	ms	
t _{WAIT}	Period of MIC Switching Time for Sensing SEND/END Button Press	2.5 to 4.5	DET= LOW, EN= LOW	10	ms	
t _{DET_IN}	Debounce Time after J_DET Changes State from HIGH to LOW	2.5 to 4.5		70	ms	
tdet_rem	Debounce Time after J_DET Changes State from LOW to HIGH	2.5 to 4.5		30	μS	
t _{квк}	SEND/END Button Press/Release Debounce Time	2.5 to 4.5		30	ms	
Power	Power					
PSRR	Power Supply Rejection Ratio	3.8	Power Supply Noise 300 mV _{PP} , f=217 Hz	-90	dB	

Application Information

Design/Layout Best Practices

System-level Electrostatic Discharge (ESD) events often occur in the audio path of a mobile device, typically when inserting or removing an accessory from the audio jack. The audio path from the audio jack to the audio codec or microphone pre-amplifier is typically designed for relatively low frequencies (<100 kHz). However, an ESD event is a high-frequency event with fast edge rates (<100 ns/V). Because of this, the audio signal paths represent a high-frequency transmission line to the ESD signal.

Use the following PCB design and layout best practices when designing a system audio path.

Audio Path Layout Guidelines for ESD

For the MIC and ground signals between the audio jack and FSA8039, decrease the spacing between these traces to increase the inductive coupling of these signals. In effect, this creates a low-frequency bandpass filter that shunts ESD energy to ground before it reaches internal components. Where feasible, lay the MIC trace as a shielded stripline; an example is shown in Figure 4.

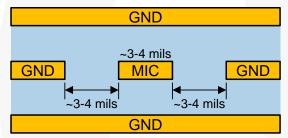
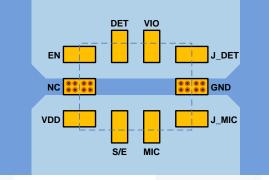



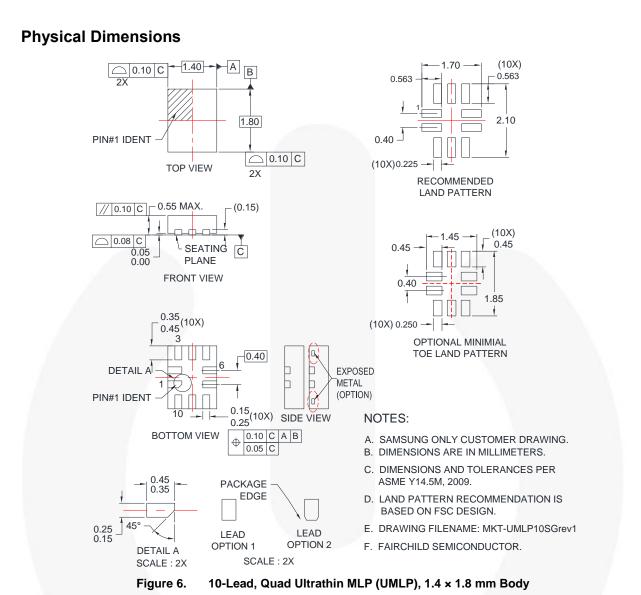
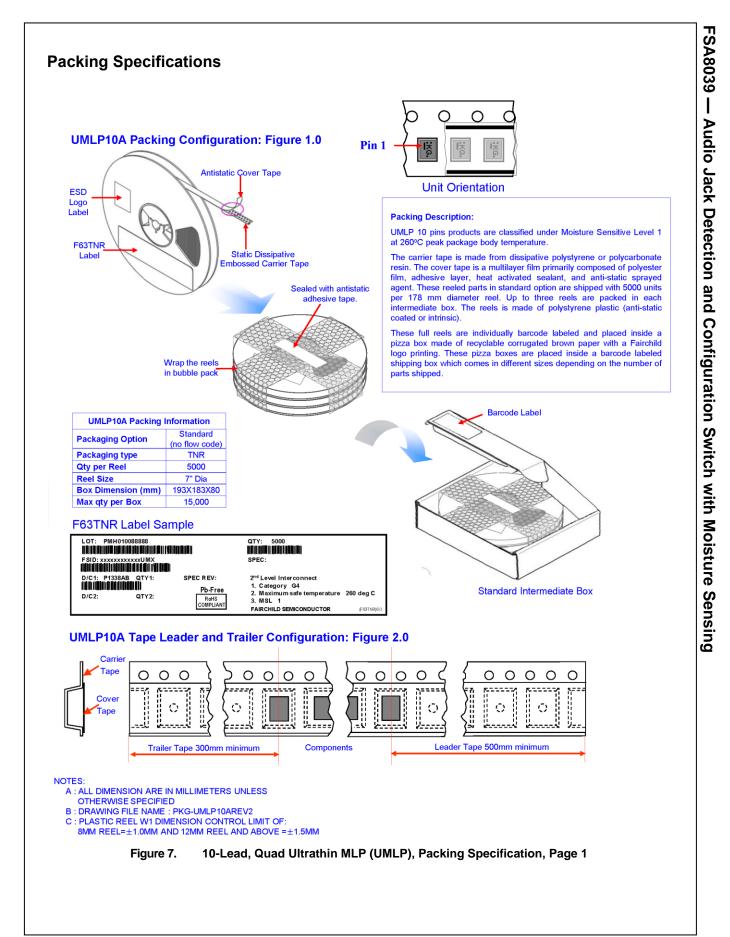
Figure 4. MIC PCB Trace as Shielded Stripline

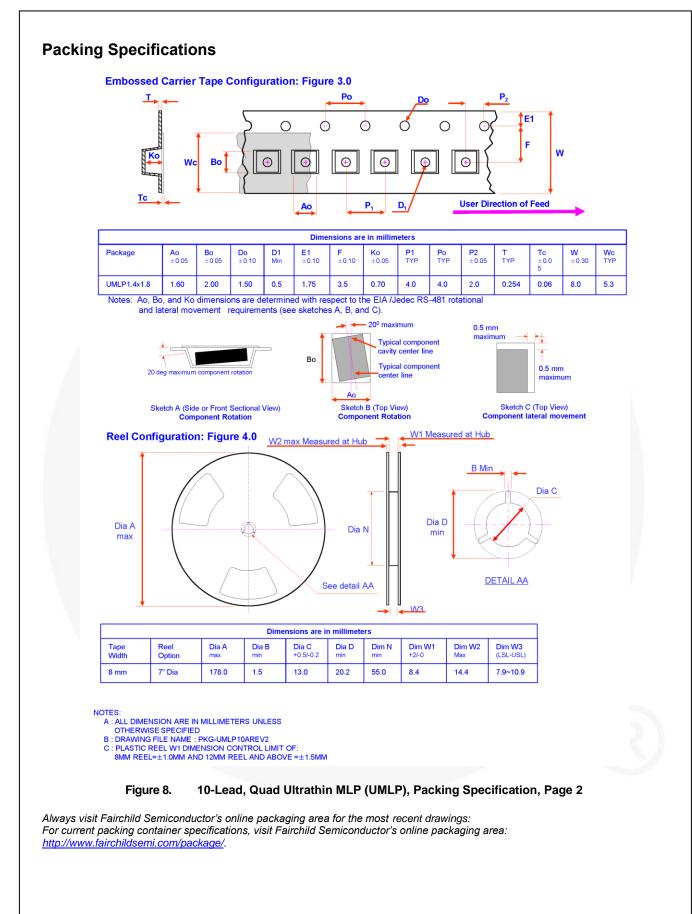
Ground Layout Guidelines

Ground layout for audio path devices should consider high-frequency effects. During an ESD event, parasitic inductance and resistance in the ground path reduces its ability to shunt the fast transient energy. Use the following techniques to improve grounding effectiveness:

- Use "star" ground connections (not daisy-chain).
- Use ground vias to minimize ground path impedance and ground loops.
- Stitch ground traces to the ground plane at the device, where possible (see Figure 4).
- Flood ground, where possible (see Figure 4).
- Avoid ground "islands" or "peninsulas" if possible.
- If using a modular audio jack assembly that is not soldered to the main PCB, use a ground pad on the jack with an ohmic connection to battery ground.

In addition to ESD robustness, these techniques can improve audio signal performance by reducing audio cross-talk and echo due to resistive voltage drops in the audio ground path.


Table 1. Nominal Values

JEDEC Symbol	Description	Nominal Values (mm)
А	Overall Height	0.5
A1	Package Standoff	0.026
A3	Lead Thickness	0.152
b	Lead Width	0.2
L	Lead Length	0.4
e	Lead Pitch	0.4
D	Body Length (Y)	1.8
E	Body Width (X)	1.4

Package drawings are provided as a service to customers considering Fairchild components. Drawings may change in any manner without notice. Please note the revision and/or date on the drawing and contact a Fairchild Semiconductor representative to verify or obtain the most recent revision. Package specifications do not expand the terms of Fairchild's worldwide terms and conditions, specifically the warranty therein, which covers Fairchild products.

Always visit Fairchild Semiconductor's online packaging area for the most recent package drawings: <u>http://www.fairchildsemi.com/dwg/UM/UMLP10SG.pdf</u>. FSA8039 — Audio Jack Detection and Configuration Switch with Moisture Sensing

© 2013 Fairchild Semiconductor Corporation FSA8039 • Rev. 1.0.0

Preliminary

No Identification Needed

Obsolete

First Production

Full Production

Not In Production

Rev. 166

The datasheet is for reference information only

changes at any time without notice to improve the design.

Semiconductor reserves the right to make changes at any time without notice to improve design Datasheet contains final specifications. Fairchild Semiconductor reserves the right to make

Datasheet contains specifications on a product that is discontinued by Fairchild Semiconductor