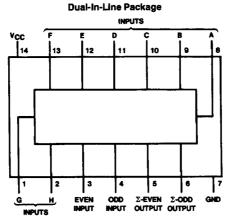


DM54180/DM74180 9-Bit Parity Generators/Checkers


General Description

These universal 9-bit (8 data bits plus 1 parity bit) parity generators/checkers feature odd/even outputs and control inputs to facilitate operation in either odd or even parity applications. Depending on whether even or odd parity is being generated or checked, the even or odd input can be utilized as the parity or 9th-bit input. The word-length capability is easily expanded by cascading.

Input buffers are provided so that each data input represents only one normalized series 54/74 load. A full fan-out to 10 normalized series 54/74 loads is available from each of the outputs at a low logic level. A fan-out to 20 normalized loads is provided at a high logic level to facilitate the connection of unused inputs to used inputs.

TI /F/6559-1

Connection Diagram

Order Number DM54180J, DM54180W or DM74180N See NS Package Number J14A, N14A or W14B

Function Table

ı	Outputs			
Σ of H's at A thru H	Even	Odd	Σ Even	Σ Odd
Even	Н	L	Н	L
Odd	Н	L	L	Н
Even	L	Н	L	Н
Odd	L	Н	Н	L
Х	Н	Н	L	L
Х	L	L	Н	Н

H = High Level, L = Low Level, X = Don't Care

Absolute Maximum Ratings (Note)

If Military/Aerospace specified devices are required, please contact the National Semiconductor Sales Office/Distributors for availability and specifications.

Supply Voltage 7V Input Voltage 5.5V

Operating Free Air Temperature Range

DM54 -55°C to +125°C DM74 0°C to +70°C

Storage Temperature Range -65°C to +150°C

Note: The "Absolute Maximum Ratings" are those values beyond which the safety of the device cannot be guaranteed. The device should not be operated at these limits. The parametric values defined in the "Electrical Characteristics" table are not guaranteed at the absolute maximum ratings. The "Recommended Operating Conditions" table will define the conditions for actual device operation.

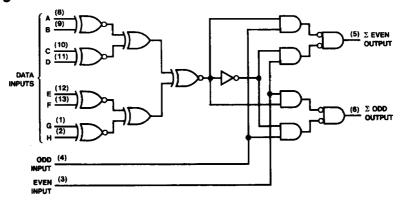
Recommended Operating Conditions

Symbol	Parameter	DM54180		DM74180			Units	
		Min	Nom	Max	Min	Nom	Max	Units
V _{CC}	Supply Voltage	4.5	5	5.5	4.75	5	5.25	٧
V _{IH}	High Level Input Voltage	2			2			V
V _{IL}	Low Level Input Voltage			0.8			0.8	V
loн	High Level Output Current			-0.8			-0.8	mA
l _{OL}	Low Level Output Current			16			16	mA
TA	Free Air Operating Temperature	- 55		125	0		70	°C

Electrical Characteristics over recommended operating free air temperature range (unless otherwise noted)

Symbol	Parameter	Conditions		Min	Typ (Note 1)	Max	Units
V _I	Input Clamp Voltage	$V_{CC} = Min, I_I = -12 mA$				-1.5	V
V _{OH}	High Level Output Voltage	$V_{CC} = Min, I_{OH} = Max$ $V_{IL} = Max, V_{IH} = Min$		2.4			٧
V _{OL}	Low Level Output Voltage	$V_{CC} = Min, I_{OL} = Max$ $V_{IH} = Min, V_{IL} = Max$				0.4	٧
lį	Input Current @ Max Input Voltage	V _{CC} = Max, V _I = 5.5V				1	mA
I _{IH} High Level Input Current	1 7 1	V _{CC} = Max V _I = 2.4V	Odd or Even			80	
	Current		Data			40	μΑ
I _{IL} Low Level Input Current	,	V _{CC} = Max	Odd or Even			- 3.2	4
	Current	V _I = 0.4V	Data			-1.6	mA
los Short Circuit Output Current	100	$V_{CC} = Max$	DM54	-20		-55	mA
	Output Current	Output Current (Note 2)	DM74	-18	-	-55	
lcc	Supply Current	V _{CC} = Max	DM54		34	49	4
		(Note 3)	DM74		34	56	mA

Note 1: All typicals are at $V_{CC} = 5V$, $T_A = 25$ °C.


Note 2: Not more than one output should be shorted at a time.

Note 3: I_{CC} is measured with EVEN and ODD inputs at 4.5V, all other inputs and outputs open.

Switching Characteristics at $V_{CC} = 5V$ and $T_A = 25^{\circ}C$ (See Section 1 for Test Waveforms and Output Load)

Symbol	Parameter	From (Input) To (Output)	Conditions	Min	Max	Units
^t PLH	Propagation Delay Time Low to High Level Output	Data to Σ Even	C _L = 15 pF R _L = 400Ω Odd Input Low		60	ns
t _{PHL}	Propagation Delay Time High to Low Level Output	Data to Σ Even			68	ns
t _{PLH}	Propagation Delay Time Low to High Level Output	Data to Σ Odd			48	ns
t _{PHL}	Propagation Delay Time High to Low Level Output	Data to Σ Odd			38	ns
t _{PLH}	Propagation Delay Time Low to High Level Output	Data to Σ Even	$C_L=15 pF$ $R_L=400\Omega$ Odd Input High		48	ns
t _{PHL}	Propagation Delay Time High to Low Level Output	Data to Σ Even			38	ns
t _{PLH}	Propagation Delay Time Low to High Level Output	Data to Σ Odd			60	ns
t _{PHL}	Propagation Delay Time High to Low Level Output	Data to Σ Odd			68	ns
t _{PLH}	Propagation Delay Time Low to High Level Output	Even or Odd to Σ Even or Σ Odd	$C_L = 15 pF$ $R_L = 400 \Omega$		20	ns
t _{PHL}	Propagation Delay Time High to Low Level Output	Even or Odd to Σ Even or Σ Odd			10	ns

Logic Diagram

TL/F/6559-2