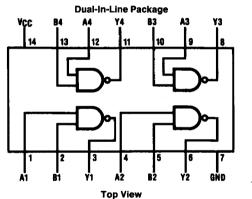


MM54HC03/MM74HC03 Quad 2-Input Open Drain NAND Gate

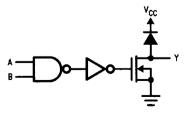
General Description


These NAND gates utilize advanced silicon-gate CMOS technology to achieve operating speeds similar to LS-TTL gates with the low power consumption of standard CMOS integrated circuits. All gates have buffered outputs. All devices have high noise immunity and the ability to drive 10 LS-TTL loads. The 54 HC/74 HC logic family is functionally as well as pin-out compatible with the standard 54 LS/74 LS logic family. All inputs are protected from damage due to static discharge by internal diode clamps to $V_{\rm CC}$ and ground.

As with standard 54HC/74HC push-pull outputs there are diodes to both $V_{\rm CC}$ and ground. Therefore the output should not be pulled above $V_{\rm CC}$ as it would be clamped to one diode voltage above $V_{\rm CC}$. This diode is added to enhance electrostatic protection.

Features

- Typical propagation delay: 12 ns
- Wide power supply range: 2-6V
- Low quiescent current: 20 µA maximum (74HC Series)
- Low input current: 1 µA maximum
- Fanout of 10 LS-TTL loads


Connection and Logic Diagrams

TL/F/5295-1

Order Number MM54HC03* or MM74HC03*

*Please look into Section 8, Appendix D for availability of various package types.

TL/F/5295-2

Absolute Maximum Ratings (Notes 1 & 2) If Military/Aerospace specified devices are required. contact the National Semiconductor Sales Office/ Distributors for availability and specifications. Supply Voltage (V_{CC}) -0.5 to +7.0V DC Input Voltage (VIN) -1.5 to $V_{CC} + 1.5V$ DC Output Voltage (V_{OUT}) -0.5 to $V_{CC} + 0.5V$ Clamp Diode Current (I_{IK}, I_{OK}) ±20 mA DC Output Current, per pin (I_{OUT}) ±25 mA DC V_{CC} or GND Current, per pin (I_{CC}) ±50 mA Storage Temperature Range (T_{STG}) -65°C to +150°C Power Dissipation (PD) (Note 3) 600 mW S.O. Package only 500 mW

Oper	ating Conditi	ons		
		Min	Max	Units
Supply Voltage (V _{CC})		2	6	V
DC Input (V _{IN} , V	or Output Voltage	0	Vcc	٧
Operatin	g Temp. Range (T₄)			
MM74HC		-40	+85	°C
MM54HC		-55	+125	°C
Input Ris	e or Fall Times			
(t _r , t _i)	V _{CC} =2.0V		1000	ns
	$V_{CC} = 4.5V$		500	ns
	$V_{CC} = 6.0V$		400	ns

DC Electrical Characteristics (Note 4)

Lead Temp. (TL) (Soldering 10 seconds)

Symbol	Parameter	Conditions	Vcc	T _A =	= 25°C	74HC T _A = -40 to 85°C	54HC T _A = -55 to 125°C	Units
				Тур	Guaranteed Limits			
V _{IH}	Minimum High Level Input Voltage		2.0V 4.5V 6.0V		1.5 3.15 4.2	1.5 3.15 4.2	1.5 3.15 4.2	V V
V _{IL}	Maximum Low Level Input Voltage**		2.0V 4.5V 6.0V		0.5 1.35 1.8	0.5 1.35 1.8	0.5 1.35 1.8	V V
V _{OL} Minimum Low Le Output Voltage	Minimum Low Level Output Voltage	V _{IN} = V _{IH} I _{OUT} ≤ 20 μA R _L = ∞	2.0V 4.5V 6.0V	0 0 0	0.† 0.1 0.1	0.1 0.1 0.1	0.1 0.1 0.1	V V
		$V_{\text{IN}} = V_{\text{IH}}$ $ I_{\text{OUT}} \le 4.0 \text{ mA}$ $ I_{\text{OUT}} \le 5.2 \text{ mA}$	4.5V 6.0V	0.2 0.2	0.26 0.26	0.33 0.33	0.4 0.4	>>
ILKG	Maximum High Level Output Leakage Current	V _{IN} =V _{IH} or V _{IL} V _{OUT} =V _{CC}	6.0V		0.5	5	10	μΑ
l _{IN}	Maximum Input Current	V _{IN} =V _{CC} or GND	6.0V		±0.1	±1.0	±1.0	μА
Icc	Maximum Quiescent Supply Current	V _{IN} =V _{CC} or GND I _{OUT} =0 μA	6.0V		2.0	20	40	μΑ

260°C

Note 1: Absolute Maximum Ratings are those values beyond which damage to the device may occur.

Note 2: Unless otherwise specified all voltages are referenced to ground.

Note 3: Power Dissipation temperature derating — plastic "N" package: -12 mW/°C from 65°C to 85°C; ceramic "J" package: -12 mW/°C from 100°C to 125°C.

Note 4: For a power supply of 5V \pm 10% the worst case output voltages (V_{OH} , and V_{OL}) occur for HC at 4.5V. Thus the 4.5V values should be used when designing with this supply. Worst case V_{IH} and V_{IL} occur at V_{CC} = 5.5V and 4.5V respectively. (The V_{IH} value at 5.5V is 3.85V.) The worst case leakage current (I_{IN} , I_{CC} , and I_{OZ}) occur for CMOS at the higher voltage and so the 6.0V values should be used.

^{**}VIL limits are currently tested at 20% of V_{CC}. The above VIL specification (30% of V_{CC}) will be implemented no later than Q1, CY'89.

AC Electrical Characteristics $V_{CC}=5V$, $T_A=25^{\circ}C$, $C_L=15$ pF, $t_f=t_f=6$ ns

Symbol	Parameter	Conditions	Тур	Guaranteed Limit	Units
tpZL, tpLZ	Maximum Propagation Delay	R _L =1 KΩ	10	20	ns

AC Electrical Characteristics

 $V_{CC} = 2.0V$ to 6.0V, $C_L = 50$ pF, $t_f = t_f = 6$ ns (unless otherwise specified)

Symbol	Parameter	Conditions	Vcc	T _A =25°C		74HC T _A = -40 to 85°C	54HC T _A = -55 to 125°C	Units	
				Тур	Guaranteed Limits				
tpLZ, tpZL	Maximum Propagation Delay	R _L =1 KΩ	2.0V 4.5V 6.0V	63 13 11	125 25 21	158 32 27	186 37 32	ns ns ns	
t _{THL}	Maximum Output Fall Time		2.0V 4.5V 6.0V	30 8 7	75 15 13	95 19 16	110 22 19	ns ns ns	
C _{PD}	Power Dissipation Capacitance (Note 5)	(per gate)		20				pF	
C _{IN}	Maximum Input Capacitance			5	10	10	10	pF	

Note 5: C_{PD} determines the no load dynamic power consumption, $P_D = C_{PD} \ V_{CC}^2 \ f + I_{CC} \ V_{CC}$, and the no load dynamic current consumption, $I_S = C_{PD} \ V_{CC} \ f + I_{CC}$. The power dissipated by R_L is not included.