MM54HC03/MM74HC03 Quad 2-Input Open Drain NAND Gate ## **General Description** These NAND gates utilize advanced silicon-gate CMOS technology to achieve operating speeds similar to LS-TTL gates with the low power consumption of standard CMOS integrated circuits. All gates have buffered outputs. All devices have high noise immunity and the ability to drive 10 LS-TTL loads. The 54 HC/74 HC logic family is functionally as well as pin-out compatible with the standard 54 LS/74 LS logic family. All inputs are protected from damage due to static discharge by internal diode clamps to $V_{\rm CC}$ and ground. As with standard 54HC/74HC push-pull outputs there are diodes to both $V_{\rm CC}$ and ground. Therefore the output should not be pulled above $V_{\rm CC}$ as it would be clamped to one diode voltage above $V_{\rm CC}$. This diode is added to enhance electrostatic protection. #### **Features** - Typical propagation delay: 12 ns - Wide power supply range: 2-6V - Low quiescent current: 20 µA maximum (74HC Series) - Low input current: 1 µA maximum - Fanout of 10 LS-TTL loads ## **Connection and Logic Diagrams** TL/F/5295-1 #### Order Number MM54HC03* or MM74HC03* *Please look into Section 8, Appendix D for availability of various package types. TL/F/5295-2 #### Absolute Maximum Ratings (Notes 1 & 2) If Military/Aerospace specified devices are required. contact the National Semiconductor Sales Office/ Distributors for availability and specifications. Supply Voltage (V_{CC}) -0.5 to +7.0V DC Input Voltage (VIN) -1.5 to $V_{CC} + 1.5V$ DC Output Voltage (V_{OUT}) -0.5 to $V_{CC} + 0.5V$ Clamp Diode Current (I_{IK}, I_{OK}) ±20 mA DC Output Current, per pin (I_{OUT}) ±25 mA DC V_{CC} or GND Current, per pin (I_{CC}) ±50 mA Storage Temperature Range (T_{STG}) -65°C to +150°C Power Dissipation (PD) (Note 3) 600 mW S.O. Package only 500 mW | Oper | ating Conditi | ons | | | |------------------------------------|-----------------------|-----|------|-------| | | | Min | Max | Units | | Supply Voltage (V _{CC}) | | 2 | 6 | V | | DC Input
(V _{IN} , V | or Output Voltage | 0 | Vcc | ٧ | | Operatin | g Temp. Range (T₄) | | | | | MM74HC | | -40 | +85 | °C | | MM54HC | | -55 | +125 | °C | | Input Ris | e or Fall Times | | | | | (t _r , t _i) | V _{CC} =2.0V | | 1000 | ns | | | $V_{CC} = 4.5V$ | | 500 | ns | | | $V_{CC} = 6.0V$ | | 400 | ns | ## DC Electrical Characteristics (Note 4) Lead Temp. (TL) (Soldering 10 seconds) | Symbol | Parameter | Conditions | Vcc | T _A = | = 25°C | 74HC
T _A = -40 to 85°C | 54HC
T _A = -55 to 125°C | Units | |--|--|---|----------------------|------------------|--------------------|--------------------------------------|---------------------------------------|--------| | | | | | Тур | Guaranteed Limits | | | | | V _{IH} | Minimum High Level
Input Voltage | | 2.0V
4.5V
6.0V | | 1.5
3.15
4.2 | 1.5
3.15
4.2 | 1.5
3.15
4.2 | V
V | | V _{IL} | Maximum Low Level
Input Voltage** | | 2.0V
4.5V
6.0V | | 0.5
1.35
1.8 | 0.5
1.35
1.8 | 0.5
1.35
1.8 | V
V | | V _{OL} Minimum Low Le
Output Voltage | Minimum Low Level Output Voltage | V _{IN} = V _{IH}
 I _{OUT} ≤ 20 μA
R _L = ∞ | 2.0V
4.5V
6.0V | 0
0
0 | 0.†
0.1
0.1 | 0.1
0.1
0.1 | 0.1
0.1
0.1 | V
V | | | | $V_{\text{IN}} = V_{\text{IH}}$
$ I_{\text{OUT}} \le 4.0 \text{ mA}$
$ I_{\text{OUT}} \le 5.2 \text{ mA}$ | 4.5V
6.0V | 0.2
0.2 | 0.26
0.26 | 0.33
0.33 | 0.4
0.4 | >> | | ILKG | Maximum High Level
Output Leakage Current | V _{IN} =V _{IH} or V _{IL}
V _{OUT} =V _{CC} | 6.0V | | 0.5 | 5 | 10 | μΑ | | l _{IN} | Maximum Input
Current | V _{IN} =V _{CC} or GND | 6.0V | | ±0.1 | ±1.0 | ±1.0 | μА | | Icc | Maximum Quiescent
Supply Current | V _{IN} =V _{CC} or GND
I _{OUT} =0 μA | 6.0V | | 2.0 | 20 | 40 | μΑ | 260°C Note 1: Absolute Maximum Ratings are those values beyond which damage to the device may occur. Note 2: Unless otherwise specified all voltages are referenced to ground. Note 3: Power Dissipation temperature derating — plastic "N" package: -12 mW/°C from 65°C to 85°C; ceramic "J" package: -12 mW/°C from 100°C to 125°C. Note 4: For a power supply of 5V \pm 10% the worst case output voltages (V_{OH} , and V_{OL}) occur for HC at 4.5V. Thus the 4.5V values should be used when designing with this supply. Worst case V_{IH} and V_{IL} occur at V_{CC} = 5.5V and 4.5V respectively. (The V_{IH} value at 5.5V is 3.85V.) The worst case leakage current (I_{IN} , I_{CC} , and I_{OZ}) occur for CMOS at the higher voltage and so the 6.0V values should be used. ^{**}VIL limits are currently tested at 20% of V_{CC}. The above VIL specification (30% of V_{CC}) will be implemented no later than Q1, CY'89. # AC Electrical Characteristics $V_{CC}=5V$, $T_A=25^{\circ}C$, $C_L=15$ pF, $t_f=t_f=6$ ns | Symbol | Parameter | Conditions | Тур | Guaranteed
Limit | Units | |------------|---------------------------|----------------------|-----|---------------------|-------| | tpZL, tpLZ | Maximum Propagation Delay | R _L =1 KΩ | 10 | 20 | ns | # **AC Electrical Characteristics** $V_{CC} = 2.0V$ to 6.0V, $C_L = 50$ pF, $t_f = t_f = 6$ ns (unless otherwise specified) | Symbol | Parameter | Conditions | Vcc | T _A =25°C | | 74HC
T _A = -40 to 85°C | 54HC
T _A = -55 to 125°C | Units | | |------------------|---|----------------------|----------------------|----------------------|-------------------|--------------------------------------|---------------------------------------|----------------|--| | | | | | Тур | Guaranteed Limits | | | | | | tpLZ, tpZL | Maximum Propagation
Delay | R _L =1 KΩ | 2.0V
4.5V
6.0V | 63
13
11 | 125
25
21 | 158
32
27 | 186
37
32 | ns
ns
ns | | | t _{THL} | Maximum Output
Fall Time | | 2.0V
4.5V
6.0V | 30
8
7 | 75
15
13 | 95
19
16 | 110
22
19 | ns
ns
ns | | | C _{PD} | Power Dissipation
Capacitance (Note 5) | (per gate) | | 20 | | | | pF | | | C _{IN} | Maximum Input
Capacitance | | | 5 | 10 | 10 | 10 | pF | | Note 5: C_{PD} determines the no load dynamic power consumption, $P_D = C_{PD} \ V_{CC}^2 \ f + I_{CC} \ V_{CC}$, and the no load dynamic current consumption, $I_S = C_{PD} \ V_{CC} \ f + I_{CC}$. The power dissipated by R_L is not included.